Purpose: SYNB1891 is a live, modified strain of the probiotic Escherichia coli Nissle 1917 (EcN) engineered to produce cyclic dinucleotides under hypoxia, leading to STimulator of INterferon Genes (STING) activation in phagocytic antigen-presenting cells in tumors and activating complementary innate immune pathways.
The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens Artur Altenhoefer et al. FEMS Immunol Med Microbiol. 2004. Free article Abstract The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells. Similar articles Detection and distribution of probiotic Escherichia coli Nissle 1917 clones in swine herds in Germany. Kleta S, Steinrück H, Breves G, Duncker S, Laturnus C, Wieler LH, Schierack P. Kleta S, et al. J Appl Microbiol. 2006 Dec;101(6):1357-66. doi: J Appl Microbiol. 2006. PMID: 17105567 E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells. Schierack P, Kleta S, Tedin K, Babila JT, Oswald S, Oelschlaeger TA, Hiemann R, Paetzold S, Wieler LH. Schierack P, et al. PLoS One. 2011 Feb 17;6(2):e14712. doi: PLoS One. 2011. PMID: 21379575 Free PMC article. Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Kamada N, Maeda K, Inoue N, Hisamatsu T, Okamoto S, Hong KS, Yamada T, Watanabe N, Tsuchimoto K, Ogata H, Hibi T. Kamada N, et al. Infect Immun. 2008 Jan;76(1):214-20. doi: Epub 2007 Oct 29. Infect Immun. 2008. PMID: 17967864 Free PMC article. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Stritzker J, et al. Int J Med Microbiol. 2007 Jun;297(3):151-62. doi: Epub 2007 Apr 19. Int J Med Microbiol. 2007. PMID: 17448724 Effect of probiotic strains on interleukin 8 production by HT29/19A cells. Lammers KM, Helwig U, Swennen E, Rizzello F, Venturi A, Caramelli E, Kamm MA, Brigidi P, Gionchetti P, Campieri M. Lammers KM, et al. Am J Gastroenterol. 2002 May;97(5):1182-6. doi: Am J Gastroenterol. 2002. PMID: 12014725 Cited by The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. Ghani R, et al. Gut Microbes. 2022 Jan-Dec;14(1):2038856. doi: Gut Microbes. 2022. PMID: 35230889 Free PMC article. Review. The microbial ecology of Escherichia coli in the vertebrate gut. Foster-Nyarko E, Pallen MJ. Foster-Nyarko E, et al. FEMS Microbiol Rev. 2022 May 6;46(3):fuac008. doi: FEMS Microbiol Rev. 2022. PMID: 35134909 Free PMC article. Review. Quantifying cumulative phenotypic and genomic evidence for procedural generation of metabolic network reconstructions. Moutinho TJ Jr, Neubert BC, Jenior ML, Papin JA. Moutinho TJ Jr, et al. PLoS Comput Biol. 2022 Feb 7;18(2):e1009341. doi: eCollection 2022 Feb. PLoS Comput Biol. 2022. PMID: 35130271 Free PMC article. Efficient markerless integration of genes in the chromosome of probiotic E. coli Nissle 1917 by bacterial conjugation. Seco EM, Fernández LÁ. Seco EM, et al. Microb Biotechnol. 2022 May;15(5):1374-1391. doi: Epub 2021 Nov 9. Microb Biotechnol. 2022. PMID: 34755474 Free PMC article. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Jones CV, et al. Appl Microbiol Biotechnol. 2021 Oct;105(20):7785-7799. doi: Epub 2021 Sep 21. Appl Microbiol Biotechnol. 2021. PMID: 34546406 Publication types MeSH terms Substances LinkOut - more resources Full Text Sources Wiley Other Literature Sources The Lens - Patent Citations Research Materials NCI CPTC Antibody Characterization Program
In vitro studies showed the probiotic Escherichia coli strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype O104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coli strains which got infected by stx2 -encoding lambdoid
Loading metrics Open Access Peer-reviewed Research Article Sandeep Kumar, Lesley A. Ogilvie, Bhavik A. Patel, Cinzia Dedi, Wendy M. Macfarlane, Brian V. Jones Disruption of Escherichia coli Nissle 1917 K5 Capsule Biosynthesis, through Loss of Distinct kfi genes, Modulates Interaction with Intestinal Epithelial Cells and Impact on Cell Health Jonathan Nzakizwanayo, Sandeep Kumar, Lesley A. Ogilvie, Bhavik A. Patel, Cinzia Dedi, Wendy M. Macfarlane, Brian V. Jones x Published: March 19, 2015 Figures AbstractEscherichia coli Nissle 1917 (EcN) is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells. This demonstrated mutants disrupted in the kfiB gene, of the K5 capsule biosynthesis cluster, to be significantly enhanced in attachment to Caco-2 cells. However, this phenotype was distinct from that previously reported for EcN K5 deficient mutants (kfiC null mutants), prompting us to explore further the role of kfiB in EcN:Caco-2 interaction. Isogenic mutants with deletions in kfiB (EcNΔkfiB), or the more extensively characterised K5 capsule biosynthesis gene kfiC (EcNΔkfiC), were both shown to be capsule deficient, but displayed divergent phenotypes with regard to impact on Caco-2 cells. Compared with EcNΔkfiC and the EcN wild-type, EcNΔkfiB exhibited significantly greater attachment to Caco-2 cells, as well as apoptotic and cytotoxic effects. In contrast, EcNΔkfiC was comparable to the wild-type in these assays, but was shown to induce significantly greater COX-2 expression in Caco-2 cells. Distinct differences were also apparent in the pervading cell morphology and cellular aggregation between mutants. Overall, these observations reinforce the importance of the EcN K5 capsule in host-EcN interactions, but demonstrate that loss of distinct genes in the K5 pathway can modulate the impact of EcN on epithelial cell health. Citation: Nzakizwanayo J, Kumar S, Ogilvie LA, Patel BA, Dedi C, Macfarlane WM, et al. (2015) Disruption of Escherichia coli Nissle 1917 K5 Capsule Biosynthesis, through Loss of Distinct kfi genes, Modulates Interaction with Intestinal Epithelial Cells and Impact on Cell Health. PLoS ONE 10(3): e0120430. Editor: Markus M. Heimesaat, Charité, Campus Benjamin Franklin, GERMANYReceived: December 9, 2014; Accepted: January 22, 2015; Published: March 19, 2015Copyright: © 2015 Nzakizwanayo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedData Availability: All relevant data are within the paper and its Supporting Information Support is provided by the Medical Research Council (G0901553) awarded to BVJ; University of Brighton Studentship to JN; Society of Applied Microbiology; BVJ is also supported by the Queen Victoria Hospital Charitable Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the interests: The authors have declared that no competing interests exist. IntroductionDue to the intimate role of the gut microbiome in human health and disease processes, this predominantly bacterial community is increasingly viewed as an important target for the development of novel approaches to diagnose, prevent, or treat a wide range of disorders [1–4]. In this context, probiotics are among the most promising tools for manipulation of the gut microbiome, and have been defined as “live microorganisms which when administered in adequate amounts confer a health benefit on the host” [5]. The majority of probiotics are Gram-positive bacterial species, and considerable evidence is accumulating regarding the efficacy of these organisms in treating or preventing a variety of gastrointestinal (GI) diseases, and potentially also extra-intestinal disorders [1–4]. Among the probiotics currently available, Escherichia coli Nissle 1917 (EcN; serotype O6:K5:H1) is of particular interest. Not only is this one of the most extensively characterized probiotic organisms (in terms of phenotype, genotype, and clinical efficacy), but is currently the only Gram-negative species in use [6]. EcN was first isolated from the faeces of a World War I soldier who, in contrast to comrades in his trench, was not affected by an outbreak of dysentery [7]. This gastroprotective strain is the active component of Mutaflor (Ardeypharm GmbH, Herdecke, Germany), a microbial drug that is marketed and used in several countries. Clinical trials have shown EcN to be effective for maintaining remission of ulcerative colitis (UC) [8–11], stimulation of the immune system in premature infants [12], treatment of infectious diarrhoea [13], and protection of human intestinal epithelial cells (IECs) against pathogens [14, 15]. These benefits are largely attributed to the immuno-modulatory effects elicited by EcN, which encompass both innate and adaptive elements of the immune system. For example, colonisation with EcN has been indicated to alter the host cytokine profile, and also chemokine production in cultured IECs [16–19]; stimulate the production of mucosal peptide based defences [20]; influence the clonal expansion of T-Cell populations, and modulate antibody responses [12, 21, 22]. Notably, the modulation of T-cell functions mediated by EcN may also extend to γδ T-cells, potentially enabling EcN to coordinate modulation of both innate and adaptive responses [22]. EcN has also been indicated to alter COX-2 expression in intestinal epithelial cells [23], which is an important target in the treatment or prevention of several GI diseases including IBD and colorectal cancer [24–27]. Although most closely related to uropathogenic strains of E. coli (UPEC), EcN is considered non-pathogenic. Genomic characterisation has highlighted the absence of genes encoding the typical UPEC virulence factors, but the retention or accumulation of factors proposed to facilitate general adaptability, colonisation of the GI tract, and the probiotic effects of EcN [28, 29]. These include a range of surface associated structures that are likely to provide the primary interface between host and microbe in the GI tract, such as flagella, fimbriae, a special truncated lipopolysaccharide (LPS) variant, and a K5 type polysaccharide capsule [6, 29–31]. In particular, structures such as flagellin, peptidoglycan and LPS, are recognised by immune regulating Toll-like receptors (TLRS) expressed by IECs, which have been established as key routes of host-microbe communication in the gut, with TLR signalling integral to epithelial homoeostasis and defence [32–34]. Signaling by several TLRs is known to be modulated either directly or indirectly by EcN derived ligands [6, 17–20, 30, 35], which include surface associated structures absent in most or all other probiotic organisms. The K5 capsule produced by EcN in particular is notable in this context, and although not a ligand for known TLRs, the EcN capsule has been implicated in the interaction of this organism with IECs, and impact on chemokine expression and TLR signalling [18,19]. Nevertheless, as with other probiotics, the detailed mechanisms underlying the clinical effectiveness of EcN remain poorly understood overall, with a greater comprehension required to fully realise the potential of this important probiotic species. Here we describe the application of random transposon mutagenesis to identify genes and surface structures involved in the interaction of EcN with human intestinal epithelial cells, and provide new insight into the mechanisms through which EcN interacts with epithelial cells. Results Isolation and genetic characterisation of EcN mutants with disruptions in genes related to cell surface structures Because cell surface structures are a primary point of contact between EcN and IECs, and processes such as biofilm formation and attachment to abiotic surfaces also depends on many of the same structures, we reasoned that selection of mutants with alterations in biofilm formation would enrich for those defective in cell surface associated features also likely to be involved in EcN-IEC interaction. Therefore, we initially subjected a total of 4,116 EcN mini-Tn5 mutants to a preliminary high throughput screen for alterations in biofilm formation (both enhancements and reductions), in order to enrich for mutants attenuated in cell surface features. In this precursor biofilm screen 21 mutants were found to be significantly different in their ability to form biofilms as compared to the EcN wild-type (EcN WT), but unaltered in general growth rate. The majority of these (n = 15) exhibited a biofilm formation enhanced (BFE) phenotype, whereas six exhibited biofilm formation deficient (BFD) phenotype as compared to the WT (Table 1). Identities of genes disrupted in these mutants indicated that the majority were associated with synthesis of cell surface structures, or aspects of cell envelope biogenesis, previously linked to host-IEC interaction or intestinal colonisation (Table 1; [18, 35, 37–40]). A subset of 6 mutants disrupted in genes predicted to encode for cell surface structures, and encompassing both BFD and BFE phenotypes, were subsequently selected for further characterisation of their interaction with cultured IECs. Fig 1. Adherence of EcN mini-Tn5 mutants to Caco-2 cells. A subset of mutants recovered from biofilm screens with disruptions in genes predicted to be involved in generation of surface tstructures, were assessed for their ability to attach to Caco-2 cells in in vitro co-culture models. Caco-2 cell monolayers (~80% confluence) were exposed to bacterial suspensions from mid-log-phase cultures at an MOI of 1:1 for 4 h at 37°C, 5% CO2. Genes disrupted in mutants tested are noted in parentheses and details can be found in Table 1. Data are expressed as the mean of three replicates, and error bars show SE of the mean. Significant differences between attachment of EcN WT and mutants is indicated by ** (P ≤ or **** (P were confirmed biofilm altered mutants and defined as biofilm enhanced (BFE) or biofilm deficient (BFD) mutants. Mutants biofilm formation index was calculated as the percentage of CV (OD595) measured in the EcN WT. Genetic characterisation of biofilm-altered mutants Genes disrupted in mutants of interest were identified using a “cloning free” arbitrary PCR-based approach to amplify DNA segments flanking the transposon insertion, as described by Manoil [55] using primers listed in S2 Table. The resulting amplicons were sequenced by GATC Biotech Ltd. (London, UK) using transposon end primer pLR27Primer 3. The putative function of disrupted genes was assigned by mapping sequence data flanking the mini-Tn5 insert site to the E. coli Nissle Draft genomes sequence [28], and the previously published genomic islands [29]. Sequence reads from mutants were trimmed to remove the 5’ low quality regions (typically ~30–50 nt), and the immediate ~40 nt flanking sections correlated with the EcN genome. Where EcN genome annotations did not provide any clear indication of putative function wider searches of the nr dataset using BlastX and/or the conserved domain database were employed. Construction of kfiB and kfiC deletion mutants Deletion mutants EcNΔkfiB and EcNΔkfiC were constructed by homologous recombination using the Xer-ciseTM chromosomal modification system (Cobra Biologics, Keele, UK) according to manufacturer’s instructions and protocols described by Bloor and Cranenburgh [56]. The system comprises plasmids pTOPO-DifCAT and pLGBE, for construction of target gene specific integration cassette and provision of the Red λ recombination functions, respectively. Briefly, kfiB or kfiC integration cassettes consisting of the difE. coli-cat-difE. coli region from pTOPO-DifCAT plasmid flanked by 50 nt regions homologous to the 3’ and 5' ends of the target gene, were generated by PCR using 70-nt primers, or (listed in S2 Table). EcN WT was first transformed with the Tc-selectable plasmid pLGBE and transformants EcN-pLGBE were used to generate electrocompetent cells, which were subsequently transformed with the PCR product of the difE. coli-cat-difE. coli integration cassette constructs. Integrants were selected on LB agar supplemented with 20 μg ml–1 Chloramphenicol. Loss of pLGBE and generation of chloramphenicol-sensitive clones, indicating resolution of difE. coli-cat-difE. coli marker genes by native recombinases and generation of markerless deletion mutants (mutants EcNΔkfiB and EcNΔkfiC) was achieved by sub-culturing the integrants in LB broth in the absence of antibiotics. Loss of pLGBE was verified by plasmid extraction, and by PCR for marker cassettes kfiB or kfiC specific primers EcNkfiB _F/R or EcNkfiC _F/R, respectively, and confirmed by PCR. Examination of polar effects in EcNΔkfiB and EcNΔkfiC mutants The effect of gene deletion or disruptions in kfiB and kfiC mutants, on the expression of downstream genes (polar effects) was assessed using RT-PCR. Total RNA was extracted from mid-log-phase bacterial cells using the RNeasy Protect Cell Mini Kit (Qiagen) according to manufacturer’s instructions, and treated using the Ambion TURBO DNA-free system (Ambion-Life technologies, Paisley, UK) to remove any potential DNA contamination. The treated RNA was used to generate cDNA using the One Step RT-PCR kit (Qiagen) according to the manufacturer’s instructions, utilising 15 ng RNA per reaction as template. Resulting cDNA was used as template in standard PCRs for detection of gene transcripts with specific primers detailed in S2 Table. Confirmation of K5 capsule absence in EcNΔkfiB and EcNΔkfiC mutants The K5 capsule-specific bacteriophage (ΦK5) [57] was used in this study to determine if the K5 capsule was expressed by EcN WT and deletion mutants. The bacteriophage was diluted and maintained in phage dilution buffer (PDB) (100 mM NaCl, 8 mM MgSO4, gelatine, 50 mM Tris pH Cultures of mutants EcNΔkfiB and EcNΔkfiC, controls EcN WT and MG1655 were grown in LB with shaking at 37°C to an OD600 of then pelleted by centrifugation (10,000 × g for 10 min) and resuspended in ice-cold 10 mM MgSO4. Aliquots of cell suspension (100 μl) were mixed with 100 μl of the appropriate bacteriophage dilution (ranging from 101 to 109 PFU ml–1 from stock suspension of × 109 PFU ml–1) in sterile mL Eppendorf tube then incubated at RT for 30 min, statically. The phage-bacteria mixture was added to a volume of 3 ml of soft agar (1% NaCl, yeast extract, 1% tryptone, agar) held at 42°C in 15 ml sterile glass tube, and the content of the tubes were mixed gently by swirling. The inoculated soft agar was poured on top of LB agar and incubated for 16 h at 37°C to allow formation of plaques. Intestinal epithelial cell culture and co-culture conditions Caco-2 cells (passage 51–79) were grown at 37°C with 5% CO2 in Dulbecco's modified Eagle's medium (DMEM, g glucose l–1) supplemented with 10% fetal bovine serum and 1× non-essential amino acids (PAA Laboratories, Somerset, UK). Cells were seeded into 6-well or 96-well plates, grown up to ~ 60–80% confluence, and used in co-culture experiments with bacteria. Mid-log-phase bacteria (OD600 of were washed with PBS and suspended in DMEM to the required final count, corresponding to the appropriate multiplicity of infection (MOI) and added to Caco-2 monolayers before plates were incubated at 37°C and 5% CO2. Bacterial adherence to Caco-2 cells Adherence was calculated according to the strategy employed by Hafez et al. [18]. Mid-log phase bacteria cultures were suspended in DMEM then added to monolayers of Caco-2 grown in 6-well plates (80% confluence) at an MOI of 1:1 and incubated at 37°C and 5% CO2 for 4 h. The monolayers were washed 3 times with PBS to remove non-adherent cells then treated with lysis solution, 1% wt / vol saponin (Sigma Aldrich) in trypsin-EDTA (PAA Laboratories, Somerset, UK) for 10 min to allow permeabilisation of Caco-2 cells and recovery of total cell-associated bacteria. Cells were mixed gently by pipetting, serially diluted in sterile PBS, plated onto LB agar, and incubated at 37°C overnight. The obtained viable count represented the total number of cell associated bacteria (adherent and internalised). Internalised bacteria were calculated using the same protocol but Caco-2 cells were treated with gentamicin for 2h (200 μg ml-1) to kill external bacteria prior to lysis and enumeration. The number of adherent bacteria was taken as the difference between total cell associated bacteria and internalised bacteria. The effect of EcN mutants on induction of apoptosis in Caco-2 cells The effect of EcN mutants on induction of apoptosis Caco-2 cells was assessed by measuring the activity of caspase 3/7 using the Caspase-Glo 3/7 kit (Promega, Southampton, UK), according to manufacturer’s instructions. Cells were seeded in 96-well plates with 5,000 cells/well and cultured to achieve ~ 60% confluence then treated with bacteria or bacterial supernatants in co-culture. Media was replaced with serum-free DMEM for 12 h prior to the treatment. Bacterial suspensions were prepared in serum-free DMEM from mid-log-phase cultures then added to Caco-2 cells at an MOI of 10:1 (bacteria:Caco-2) in a final volume of 100 μl/ well. The plates were incubated for 2 h at 37°C and 5% CO2 then media was replaced with fresh serum-free DMEM supplemented with gentamicin at 200 μg ml–1 to stop bacterial growth, and plates were incubated for another 10 h. Bacterial supernatants were obtained from cells grown in 5 mL serum-free DMEM at 37°C overnight, with shaking, and recovered by centrifugation (1,500 × g for 10 min), pH adjusted to and filter-sterilised ( The supernatants were diluted in fresh serum-free DMEM at a ratio of 1:1, and used in place of cell suspensions as described above. Caspase 3/7 activity was measured as relative light units (RLUs) using a Synergy Multi-Mode Plate Reader (BioTek, Potton, UK) operated with BioTek software. Analysis of cytotoxicity The effect of EcN strains on induction of cytotoxicity in Caco-2 cells was assessed by measuring the amount of lactate dehydrogenase (LDH) released into the co-culture media, using the CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega). Caco-2 cells were treated with bacteria and controls as described for the analysis of apoptosis (above) and both assays were performed in parallel. After treatment of Caco-2 cells, supernatants were collected from plate wells using a multichannel pipette then transferred to fresh 96-well at 50 μl/well. The supernatant was diluted further in serum-free culture media then mixed with the CytoTox 96 substrate at a ration of 1:1. Plates were incubated in the dark at room temperature for 30 min and absorbance at 490 nm (OD490) was recorded. The percentage of cytotoxicity was calculated as LDH released in treated cells (OD490)/maximum LDH release (OD490) × 100. Maximum release was determined as the amount released by total lysis of untreated Caco-2 cells with the CytoTox 96 lysis Solution (10X). Analysis of cellular and nuclear morphology Membrane integrity and nuclear morphology of Caco-2 cells were analysed by fluorescent phalloidin (F-actin) and Dapi (DNA) stainings. Cells were grown on sterile glass cover slips in 6-well plates then treated with EcN strains and controls (MG1655 and mM camptothecin; Sigma) as described above (analysis of apoptosis). After the treatments, the cells on coverslips were washed with PBS then fixed with 4% formaldehyde (Sigma) in PBS for 20 min at RT. The fixed cells were washed three times with PBS and permeabilised with Triton X-100 (Sigma) in PBS for 5 min at RT. The cells were washed three times with PBS, 5 min per wash with gentle rocking, then treated with a μg ml–1 solution of fluorescein isothiocyanate-phalloidin (Sigma- Aldrich) in PBS for 1 h at RT in the dark. The cells were washed twice with PBS and were mounted with the Fluoroshield DAPI medium (Sigma) and examined under a Leica TCS SP5 Confocal Laser Scanning microscope (Leica Microsystems, Wetzlar, Germany). Analysis of COX-2 expression The expression of COX-2 protein in Caco-2 co-cultures was analysed by western blotting using standard methods. Briefly, Caco-2 cells were seeded in 6 wells plates, and at ~ 60% confluence, were treated with EcN K5 mutants and controls as described above (analysis of apoptosis). Lipopolysaccharide (LPS, final concentration, 5 μg ml–1) from Salmonella enterica (Sigma, UK) and human tumour necrosis factor alpha (TNF-α, 10 ng ml–1) (Sigma, UK) were used as pro-inflammatory stimulator positive controls. Treated Caco-2 cell monolayers were washed 3 times with PBS, trypsinised then resuspended in 100 μl of hypotonic buffer (10 mM HEPES, 10 mM KCl, mM EDTA, mM EGTA, 1 mM DTT in SDW, pH containing Sigma protease inhibitor cocktail (1:20), for 15 min at 4°C. Cells were lysed in 25 μl 10% Triton X-100 for 30 min and total protein obtained by centrifugation (10,000 g for 1 min at 4°C). Protein concentration was determined by the Bradford method (Bio-Rad) and equivalent amounts of protein lysates (10 μg) separated by electrophoresis on SDS—PAGE (10%), and then transferred onto a nitrocellulose membrane (GE Healthcare, Giles, UK). The blots were blocked at RT with 10% skimmed milk powder in TBST buffer (10 mM Tris, pH M NaCl, Tween 20), and incubated with primary antibody, anti-COX-2 rabbit polyclonal (Abcam, Cambridge, UK) 1:1,000 in TBST, overnight at 4°C. Blots were washed with TBST then incubated with anti-rabbit HRP-conjugated secondary antibody (Sigma, UK) 1:5,000 in TBST, for 1h at RT. Membranes were washed further then visualised by incubation with the ECL chemiluminescent reagent (Amersham, Little Chalfont, UK) and exposed to Kodak Image Station 440 for signal detection. Blots were then stripped and reprobed with loading control anti-GAPDH mouse monoclonal (Ambion, Cambridge, UK); anti-mouse IgG HRP-conjugated (Sigma, UK) as secondary antibody. The bands of COX-2 densitometry readings were normalized to the GAPDH control. Analysis of cell morphology and aggregation Bacteria were grown statically in 5 mL LB in 50 mL sterile polystyrene tube at 37°C for 16 h. The cultures were mix gently by swirling and 3 μL of each was directly transferred onto glass slide, allowed to rest for 1 min then covered with a cover slip and visualised using ×40 magnification phase contrast microscopy. For each culture 10 randomly selected fields of view across each slide were captured using the Olympus Cell Sense software, and subsequently reviewed. Representative images were selected and adjusted only for brightness and contrast. Statistical analysis All statistical analysis was performed using Prism For Mac OS X (Graphpad Software inc. USA; Data was analysed using either Student’s t-test, or ANOVA with the Bonferroni correction for multiple comparisons. Supporting InformationS1 Fig. Overview of K5 capsule biosynthesis in E. coli, and associated genes disrupted in this show the genetic organisation of the K5 gene cluster in E. coli Nissle 1917 based on data from Cress et al. [28]; Grozdanov et al. [29], and an overview of the current model for K5 capsule biosynthesis and assembly adapted from Griffiths et al. [36]; Whitfield [41]; Petit et al. [42]; Bliss et al. [43]; Hodson et al. [44]; Corbett and Roberts [45]; Whitfield and Roberts [46]; Rigg et al. [47]; Whitfield and Willis [58]. A) Physical map of the EcN K5 capsular polysaccharide gene cluster. Region I (kpsF,E,D,U,C,S) and Region III (kpsM,T) encode elements of synthesis and export machinery, and are conserved among E. coli strains generating Group 2 polysaccharide capsules. Region II encodes K5 specific polysaccharide synthesis machinery (kfiA,B,C,D). Genes disrupted by transposon mutagenesis (kfiB, kpsT) and/or subject to gene knockout (kfiB,C) in this study are identified. HP—denote hypothetical proteins of unknown function B) Representation of main stages and associated K5 biosynthetic machinery (stages 1–3). K5 assembly is localised to the cytoplasmic face of the inner membrane, and is underpinned by the formation of a biosynthetic complex which catalyses synthesis and export polysaccharide precursors for incorporation in the maturing capsule on the cell surface. During K5 assembly it is believed that a unified biosynthetic complex is developed which progressively catalyses main stages [1–3]. However, for clarity here we have separated each main stage of K5 synthesis and associated membrane complexes. Stage 1) Proteins encoded by kpsF,U,C,S are believed to be responsible for the initial generation of the phospatyidyl acceptor and Kdo linker (keto-3-deoxy-manno-2-octulosonic acid), upon which the polysaccharide chain is synthesised. Stage 2) Proteins encoded by kfiA-D are responsible for synthesis of the polysaccharide chain through addition of alternating units of GlcA (glucuronic acid) and GlcNAc (N-acetyl-glucosamine) from UDP-sugar precursors. Stage 3) Proteins generated by kpsD,E,M,T form an ABC transporter complex that translocates completed polysaccharide chains to the cell surface, in an energy dependant process. Acknowledgments We wish to thank Prof Jun Zhu (University of Pennsylvania, School of Medicine) and Prof Ian Roberts (University of Manchester, Faculty of Life Sciences) for gifts of pRL27::mini-Tn5 system and ΦK5 bacteriophage, respectively. We also thank Dr Rocky Cranenburgh (Cobra Biologics) for generous provision of the Xer-cise system, and technical support during its application. We also thank Joseph Hawthorn, Rowena Berterelli, Heather Catty, Christopher Morris and Maurizio Valeri for excellent technical support, and Dr Claire Rosten and Dr Caroline Jones for constructive comments and criticism. Author ContributionsConceived and designed the experiments: BVJ JN. Performed the experiments: JN SK. Analyzed the data: BVJ JN LAO BAP WMM. Wrote the paper: JN LAO BAP CD WMM Foxx-Orenstein AE, Chey W. Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders. Am J Gastroenterol Suppl. 2012; 1: 41–46. View Article Google Scholar 2. Shanahan F. Therapeutic implications of manipulating and mining the microbiota. J Physiol. 2009; 587: 4175–4179. pmid:19505978 View Article PubMed/NCBI Google Scholar 3. O'Sullivan GC, Kelly P, O'Halloran S, Collins C, Collins JK, Dunne C, et al. Probiotics: an emerging therapy. Curr Pharm Des. 2005; 11: 3–10. pmid:15641939 View Article PubMed/NCBI Google Scholar 4. Ringel Y, Quigley EMM, Li HC. Using probiotics in gastrointestinal disorders. Am J Gastroenterol Suppl. 2012; 1: 34–40. View Article Google Scholar 5. FAO/WHO. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; Ontario, Canada. April 30, May 1, 2002. 6. Sonnenborn U, Schulze J. The non-pathogenic Escherichia coli strain Nissle 1917—features of a versatile probiotic. Microb Ecol Health Dis. 2009; 21: 122–158. View Article Google Scholar 7. Nissle A. Die antagonistische Behandlung chronischer Darmstörungen mit Colibakterien. Med Klin. 1918; 2: 29–33. View Article Google Scholar 8. Schultz M. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis. 2008; 14: 1012–1018. pmid:18240278 View Article PubMed/NCBI Google Scholar 9. Kruis W, Schütz E, Fric P, Fixa B, Judmaier G, Stolte M. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 1997; 11: 853–858. pmid:9354192 View Article PubMed/NCBI Google Scholar 10. Kruis W, Fric P, Pokrotnieks J, Lukás M, Fixa B, Kascák M, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004; 53:1617–1623. pmid:15479682 View Article PubMed/NCBI Google Scholar 11. Matthes H, Krummenerl T, Giensch M, Wolff C, Schulze J. Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle (EcN). BMC Complement Altern Med. 2010; 10:13. pmid:20398311 View Article PubMed/NCBI Google Scholar 12. Cukrowska B, LodInová-ZádnIková R, Enders C, Sonnenborn U, Schulze J, Tlaskalová-Hogenová H. Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E. coli strain Nissle 1917. Scand J Immunol. 2002; 55: 204–209. pmid:11896937 View Article PubMed/NCBI Google Scholar 13. Henker J, Laass M, Blokhin BM, Bolbot YK, Maydannik VG, Elze M, et al. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. Eur J Pediatr. 2007; 166: 311–318. pmid:17287932 View Article PubMed/NCBI Google Scholar 14. Boudeau J, Glasser AL, Julien S, Colombel JF, Darfeuille-Michaud A. Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn's disease. Aliment Pharmacol Ther. 2003; 18: 45–56. pmid:14531740 View Article PubMed/NCBI Google Scholar 15. Lodinová-Zádniková R, Sonnenborn U. Effect of preventive administration of a nonpathogenic Escherichia coli strain on the colonization of the intestine with microbial pathogens in newborn infants. Biol Neonate 1997; 71: 224–232. pmid:9129791 View Article PubMed/NCBI Google Scholar 16. Ukena SN, Westendorf AM, Hansen W, Rohde M, Geffers R, Coldewey S, et al. The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med Genet. 2005; 6: 43. pmid:16351713 View Article PubMed/NCBI Google Scholar 17. Grabig A, Paclik D, Guzy C, Dankof A, Baumgart DC, Erckenbrecht J, et al. Escherichia coli strain Nissle 1917 ameliorates experimental colitis via toll-like receptor 2- and toll-like receptor 4-dependent pathways. Infect Immun. 2006; 74: 4075–4082. pmid:16790781 View Article PubMed/NCBI Google Scholar 18. Hafez M, Hayes K, Goldrick M, Warhurst G, Grencis R, Roberts IS. The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect Immun. 2009; 77: 2995–3003. pmid:19380467 View Article PubMed/NCBI Google Scholar 19. Hafez M, Hayes K, Goldrick M, Grencis RK, Roberts IS. The K5 capsule of Escherichia coli strain Nissle 1917 is important in stimulating expression of Toll-like receptor 5, CD14, MyD88, and TRIF together with the induction of interleukin-8 expression via the mitogen-activated protein kinase pathway in epithelial cells. Infect Immun. 2010; 78: 2153–2162. pmid:20145095 View Article PubMed/NCBI Google Scholar 20. Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K. Induction of Human β-Defensin 2 by the Probiotic Escherichia coli Nissle 1917 Is Mediated through Flagellin. Infect Immun. 2007; 75: 2399–2407. pmid:17283097 View Article PubMed/NCBI Google Scholar 21. Sturm A, Rilling K, Baumgart DC, Gargas K, Abou-Ghazalé T, Raupach B, et al. Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infect Immun. 2005; 73: 1452–1465. pmid:15731043 View Article PubMed/NCBI Google Scholar 22. Guzy C, Paclik D, Schirbel A, Sonnenborn U, Wiedenmann B, Sturm A. The probiotic Escherichia coli strain Nissle 1917 induces γδ T cell apoptosis via caspase- and FasL-dependent pathways. Int Immunol. 2008; 20: 829–840. pmid:18448456 View Article PubMed/NCBI Google Scholar 23. Otte JM, Mahjurian-Namari R, Brand S, Werner I, Schmidt WE, Schmitz F. Probiotics regulate the expression of COX-2 in intestinal epithelial cells. Nutr Cancer 2009; 61: 103–113. pmid:19116880 View Article PubMed/NCBI Google Scholar 24. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010; 29: 781–788. pmid:19946329 View Article PubMed/NCBI Google Scholar 25. Wallace JL. Prostaglandin biology in inflammatory bowel disease. Gastroenterol Clin North Am. 2001; 30: 971–980. pmid:11764538 View Article PubMed/NCBI Google Scholar 26. Ritland SR, Gendler SJ. Chemoprevention of intestinal adenomas in the ApcMin mouse by piroxicam: kinetics, strain effects and resistance to chemosuppression. Carcinogenesis 1999; 20: 51–58. pmid:9934849 View Article PubMed/NCBI Google Scholar 27. Rhodes JM, Campbell BJ. Inflammation and colorectal cancer: IBD-associated and sporadic cancer compared. Trends Mol Med. 2002; 8: 10–16. pmid:11796261 View Article PubMed/NCBI Google Scholar 28. Cress BF, Linhardt RJ, Koffas MA. Draft Genome Sequence of Escherichia coli Strain Nissle 1917 (Serovar O6:K5:H1). Genome Announc. 2013; 1: e00047–13. View Article Google Scholar 29. Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol. 2004; 186: 5432–5441. pmid:15292145 View Article PubMed/NCBI Google Scholar 30. Grozdanov L, Zähringer U, Blum-Oehler G, Brade L, Henne A, Knirel YA, et al. A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J Bacteriol. 2002; 184: 5912–5925. pmid:12374825 View Article PubMed/NCBI Google Scholar 31. Vejborg RM, Friis C, Hancock V, Schembri MA, Klemm P. A virulent parent with probiotic progeny: comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Mol Genet Genomics 2010; 283: 469–484. pmid:20354866 View Article PubMed/NCBI Google Scholar 32. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118: 229–241. pmid:15260992 View Article PubMed/NCBI Google Scholar 33. Lundin A, Bok CM, Aronsson L, Björkholm B, Gustafsson JA, Pott S, et al. Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol. 2008; 10: 1093–1103. pmid:18088401 View Article PubMed/NCBI Google Scholar 34. Pålsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004; 113: 153–162. pmid:15379975 View Article PubMed/NCBI Google Scholar 35. Lasaro MA, Salinger N, Zhang J, Wang Y, Zhong Z, Goulian M, et al. F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol. 2009; 75: 246–251. pmid:18997018 View Article PubMed/NCBI Google Scholar 36. Griffiths G, Cook NJ, Gottfridson E, Lind T, Lidholt K, Roberts IS. Characterization of the glycosyltransferase enzyme from the Escherichia coli K5 capsule gene cluster and identification and characterization of the glucuronyl active site. J Biol Chem. 1998; 273: 11752–11757. pmid:9565598 View Article PubMed/NCBI Google Scholar 37. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol. 1998; 30: 285–293. pmid:9791174 View Article PubMed/NCBI Google Scholar 38. Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev. 2000; 64: 694–708. pmid:11104815 View Article PubMed/NCBI Google Scholar 39. Troge A, Scheppach W, Schroeder BO, Rund SA, Heuner K, Wehkamp J, et al. More than a marine propeller—the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus. Int J Med Microbiol. 2012; 302: 304–314. pmid:23131416 View Article PubMed/NCBI Google Scholar 40. Klemm P, Schembri MA. Bacterial adhesins: function and structure. Int J Med Microbiol. 2000; 290: 27–35. pmid:11043979 View Article PubMed/NCBI Google Scholar 41. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem. 2006; 75: 39–68. pmid:16756484 View Article PubMed/NCBI Google Scholar 42. Petit C, Rigg GP, Pazzani C, Smith A, Sieberth V, Stevens M, et al. Region 2 of the Escherichia coli K5 capsule gene cluster encoding proteins for the biosynthesis of the K5 polysaccharide. Mol Microbiol. 1995; 17: 611–620. pmid:8801416 View Article PubMed/NCBI Google Scholar 43. Bliss JM, Silver RP. Coating the surface: a model for expression of capsular polysialic acid in Escherichia coli K1. Mol Microbiol. 1996; 21: 221–231. pmid:8858578 View Article PubMed/NCBI Google Scholar 44. Hodson N, Griffiths G, Cook N, Pourhossein M, Gottfridson E, Lind T, et al. Identification that KfiA, a protein essential for the biosynthesis of the Escherichia coli K5 capsular polysaccharide, is an alpha-UDP-GlcNAc glycosyltransferase. The formation of a membrane-associated K5 biosynthetic complex requires KfiA, KfiB, and KfiC. J Biol Chem. 2000; 275: 27311–27315. pmid:10859322 View Article PubMed/NCBI Google Scholar 45. Corbett D, Roberts IS. Capsular polysaccharides in Escherichia coli. Adv Appl Microbiol. 2008; 65: 1–26. pmid:19026860 View Article PubMed/NCBI Google Scholar 46. Whitfield C, Roberts IS. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol. 1999; 31: 1307–1319. pmid:10200953 View Article PubMed/NCBI Google Scholar 47. Rigg GP, Barrett B, Roberts IS. The localization of KpsC, S and T, and KfiA, C and D proteins involved in the biosynthesis of the Escherichia coli K5 capsular polysaccharide: evidence for a membrane-bound complex. Microbiology 1998; 144: 2905–2914. pmid:9802032 View Article PubMed/NCBI Google Scholar 48. Pelkonen S. Capsular sialyl chains of Escherichia coli K1 mutants resistant to K1 phage. Curr Microbiol. 1990; 21: 23–28. View Article Google Scholar 49. Pelkonen S, Aalto J, Finne J. Differential activities of bacteriophage depolymerase on bacterial polysaccharide: binding is essential but degradation is inhibitory in phage infection of K1-defective Escherichia coli. J Bacteriol. 1992; 174: 7757–7761. pmid:1447142 View Article PubMed/NCBI Google Scholar 50. Schembri MA, Dalsgaard D, Klemm P. Capsule shields the function of short bacterial adhesins. J Bacteriol. 2004; 186: 1249–1257. pmid:14973035 View Article PubMed/NCBI Google Scholar 51. Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo JM, Schembri MA. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun. 2007; 75: 3233–3244. pmid:17420234 View Article PubMed/NCBI Google Scholar 52. Hanna A, Berg M, Stout V, Razatos A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl Environ Microbiol. 2003; 69:4474–4481. pmid:12902231 View Article PubMed/NCBI Google Scholar 53. Larsen RA, Wilson MM, Guss AM, Metcalf WW. Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol. 2002; 178: 193–201. pmid:12189420 View Article PubMed/NCBI Google Scholar 54. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998; 30: 295–304. pmid:9791175 View Article PubMed/NCBI Google Scholar 55. Manoil C. Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol. 2000; 326: 35–47. pmid:11036633 View Article PubMed/NCBI Google Scholar 56. Bloor AE, Cranenburgh RM. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol. 2006; 72: 2520–2525. pmid:16597952 View Article PubMed/NCBI Google Scholar 57. Gupta DS, Jann B, Schmidt G, Golecki JR, Ørskov I, Ørskov F, et al. Coliphage K5, specific for E. coli exhibiting the capsular K5 antigen. FEMS Microbiol Lett. 1982; 14: 75–78. View Article Google Scholar 58. Willis LM, Whitfield C. KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferases involved in synthesis of bacterial capsules. Proc Natl Acad Sci U S A. 2013; 110: 20753–20758. pmid:24302764 View Article PubMed/NCBI Google Scholar 59. Jones BV, Young R, Mahenthiralingam E, Stickler DJ. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun. 2004; 72: 3941–3950. View Article Google Scholar
Escherichia coli Nissle 1917 (EcN) is an intestinal probiotic that is effective for the treatment of intestinal disorders, such as inflammatory bowel disease and ulcerative colitis. EcN is a representative Gram-negative probiotic in biomedical research and is an intensively studied probiotic.
Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine Free W Kruis1, P Frič2, J Pokrotnieks3, M Lukáš4, B Fixa5, M Kaščák6, M A Kamm7, J Weismueller8, C Beglinger9, M Stolte10, C Wolff11, J Schulze111Evangelisches Krankenhaus Kalk, University of Cologne, Germany2Ustředná vojenská nemocnice, II interní oddělení, Praha, Czech Republic3Paula Stradina Clinical University Hospital, Riga, Latvia4IV Interni Klinika, Charles University, Praha, Czech Republic52nd Department of Medicine, Charles University Prague, Medical Faculty, Hradec Kralove, Czech Republic6Interné oddelenie NsP, Trenčín, Slovak Republic7St Mark’s Hospital, London, UK8Private Practice, Koblenz, Germany9Division of Gastroenterology, University Hospital, Basel, Switzerland10Institut für Pathologie, Klinikum Bayreuth, Germany11Ardeypharm, Herdecke, GermanyCorrespondence to: Dr W Kruis Evangelisches Krankenhaus Kalk, Buchforststr 2, 51103 Cologne, Germany; Abstract Background and aim: Evidence exists for the pathogenic role of the enteric flora in inflammatory bowel disease. Probiotics contain living microorganisms which exert health effects on the host. We compared the efficacy in maintaining remission of the probiotic preparation Escherichia coli Nissle 1917 and established therapy with mesalazine in patients with ulcerative colitis. Patients and methods: In total, 327 patients were recruited and assigned to a double blind, double dummy trial to receive either the probiotic drug 200 mg once daily (n = 162) or mesalazine 500 mg three times daily (n = 165). The study lasted for 12 months and patients were assessed by clinical and endoscopic activity indices (Rachmilewitz) as well as by histology. The primary aim of the study was to confirm equivalent efficacy of the two drugs in the prevention of relapses. Results: The per protocol analysis revealed relapses in 40/110 ( patients in the E coli Nissle 1917 group and 38/112 ( in the mesalazine group (significant equivalence p = Subgroup analyses showed no differences between the treatment groups in terms of duration and localisation of disease or pretrial treatment. Safety profile and tolerability were very good for both groups and were not different. Conclusions: The probiotic drug E coli Nissle 1917 shows efficacy and safety in maintaining remission equivalent to the gold standard mesalazine in patients with ulcerative colitis. The effectiveness of probiotic treatment further underlines the pathogenetic significance of the enteric flora. UC, ulcerative colitisIBD, inflammatory bowel diseaseEcN, Escherichia coli Nissle 1917GCP, good clinical practiceCAI, clinical activity indexEI, endoscopic indexITT, intention to treat populationPP, per protocol population5-ASA, 5-aminosalicylic acidulcerative colitismaintenance therapyprobioticsEscherichia coli Nissle Statistics from Request Permissions If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways. UC, ulcerative colitisIBD, inflammatory bowel diseaseEcN, Escherichia coli Nissle 1917GCP, good clinical practiceCAI, clinical activity indexEI, endoscopic indexITT, intention to treat populationPP, per protocol population5-ASA, 5-aminosalicylic acidulcerative colitismaintenance therapyprobioticsEscherichia coli Nissle Ulcerative colitis (UC) is a chronic relapsing disease. The aims of treatment are induction of remission and prevention of relapses. Guidelines1,2 recommend aminosalicylates for maintenance treatment. Aminosalicylates exert various effects on leukotrienes, cytokines, and oxygen Their mode of action in UC remains unclear. It is suggested that the sum of their anti-inflammatory activities constitutes their therapeutic principle. Thus maintenance treatment with aminosalicylates is only effective when inflammation starts, but not in the non-inflamed gut. Growing evidence exists for a role of the intestinal microflora in the pathogenesis of inflammatory bowel disease (IBD). Findings from genetically engineered animal models as well as clinical observations have elucidated the importance of commensal Antibacterial treatment showed some beneficial effects7,8 but the use of antibiotics is limited. Therefore, treatment with probiotics has been proposed. Probiotics are viable non-pathogenic microorganisms that confer health benefits to the host by improving the microbial balance of the indigenous Apart from anecdotal experience, two controlled studies with the probiotic bacterial strain Escherichia coli Nissle 1917 (EcN) in UC already These trials showed no difference between the relapse preventing effects of EcN and standard mesalazine. However, some criticism was raised as to the validity of these The present study was undertaken to confirm that the relapse preventing effects of probiotic therapy with EcN and standard mesalazine are equivalent. MATERIALS AND METHODS The study was conducted according to the Helsinki Declaration (revised version of Hong Kong) and adhered to good clinical practice (GCP) guidelines. The study was approved by the Ethikkommission der Ärztekammer Nordrhein, Germany, as well as by the local ethics committees of the participating centres. All patients received material in their own language and gave written informed consent. Patients were included in the study if aged 18–70 years and diagnosed with UC in remission (clinical activity index (CAI) ⩽4, endoscopic index (EI) ⩽4, and no signs of acute inflammation on histological examination). In addition, inclusion criteria comprised at least two acute attacks of UC prior to the study and a duration of the current remission of no longer than 12 months. Exclusion criteria were: active UC; proctitis with up to 10 cm proximal spread; Crohn’s disease; infectious colitis; severe accompanying illnesses or major colonic surgery; use of antibiotics, sulphonamides, steroids, or other therapies for UC at entry into the trial; administration of EcN within the previous six months before trial entry; as well as known intolerance to salicylates. Study medication The investigational drug was a bacterial preparation for oral use containing non-pathogenic Escherichia coli of strain Nissle 1917 (serotype O6:K5:H1). Capsules were enteric coated to protect the microorganisms from gastric juice and contained viable bacteria (Mutaflor 100 mg; Ardeypharm GmbH, Herdecke, Germany). The control preparation was mesalazine, consisting of eudragit L coated 5-aminosalicylic acid (Salofalk500 mg; Dr Falk Pharma GmbH, Freiburg, Germany). The test group received one capsule of Mutaflor 100 mg once daily and one tablet of placebo three times daily from day 1 to day 4, and two capsules of Mutaflor 100 mg once daily and one tablet of placebo three times daily from day 5 to the end of the study. The control group received one capsule of placebo once daily and one tablet of Salofalk 500 mg three times daily from day 1 to day 4, and two capsules of placebo once daily and one tablet of Salofalk 500 mg three times daily from day 5 to the end of the study. No concomitant medication for UC was allowed throughout the study. Study design This was a randomised, double blind, double dummy trial comparing the relapse preventing effects and safety of a bacterial preparation containing viable EcN and mesalazine for 12 months in patients with UC in remission. The study was conducted in 60 hospitals and private settings in 10 European countries (see list of participating investigators in the appendix). Randomisation was carried out in a double blind manner in blocks of four patients using 1:1 allocation to the two treatment groups. Only complete blocks of random numbers were used for each centre. If patients were eligible for study entry, they were assigned to random numbers ( = patient numbers) in ascending order within each centre according to the chronological order of their randomisation and were given the corresponding study medication. Evaluation Clinic visits were required at the start and end of the study as well as after 1, 2, 3, 6, and 9 months of treatment. The primary objective of the study was to compare the number of patients experiencing a relapse of UC during the 12 month observation period between the two treatment groups. Patients were classified as suffering a relapse when all three of the following criteria were met: CAI >6 or an increase in CAI of at least 3 points with CAI = 4 being exceeded at the same time; EI >4; and histological signs of acute inflammation. CAI was defined according to At trial entry and at the end of the study, patients underwent colonoscopy where biopsies were taken. Endoscopic activity was assessed using a four point index14: granularity, vascular pattern, vulnerability of mucosa, and mucosal damage. All biopsies were examined by a single pathologist using a four point Secondary efficacy variables were the physician’s and patient’s assessment of general well being and calculation of a quality of life Additionally, time to relapse, CAI, EI, and histological findings were documented. Laboratory assessments, including erythrocyte sedimentation rate, C reactive protein, orosomucoids, blood counts, liver enzymes, creatinine, serum iron, and serum albumin were performed at trial entry and at the end of the study. Incidence and severity of adverse events were reported according to GCP for clinical trials of medication in the European Community (91/507/EWG, CPMP/ICH/135/95). Tolerance of the study medication was assessed on a four point scale (very good, good, fair, poor), and patient compliance was ascertained by pill counting. Statistical analysis The aim of the study was to statistically confirm one sided equivalent efficacy of EcN and mesalazine in preventing relapses of UC. Relapse rates were compared using the one sided test of Farrington and Manning17: this tests the null hypothesis that the difference between treatment groups is greater than or equal to the upper equivalence margin Δ of 20% versus the alternative that the true difference is less than 20% (α = upper confidence limit 95%). Assuming a 12 month relapse rate of 30% under mesalazine treatment and 35% under EcN treatment, to reach a statistical power of 80% at least n = 127 patients were required in each treatment group according to the sample size term for comparative binomial trials with the null hypothesis of non-zero risk Two sets of patients were analysed: an intention to treat population (ITT), including all patients who took at least one dose of the study medication, and a per protocol population (PP). According to generally accepted standards for equivalence and non-inferiority trials,18 primary analysis of the main objective (difference in relapse rates) was based on the PP population. Assuming 25% protocol violators, a total number of 160 patients in each treatment group was therefore planned. Baseline comparability and statistical analysis of secondary objectives was assessed using Fisher’s exact test (two sided; α = In addition, Kaplan-Meier curves were plotted. If no CAI or other parameter was documented at the individual study end, the “last observation carried forward” method was applied. Results are given as mean (SD). Statistical tests were executed using SPSS software package version under the Microsoft Windows NT operating system. For exploratory comparisons (tables 2, 3), the Student’s t test was used. RESULTS Patient characteristics In total, 327 patients were enrolled and randomised to either the EcN preparation (n = 162) or mesalazine (n = 165). The two patient groups were matched with regard to demographic, clinical, and pretreatment characteristics (table 1). The time gap between the end of the last relapse before the study and entry into the study was not longer than four weeks in of patients receiving EcN and in receiving mesalazine, and not longer than three months in and of EcN and mesalazine patients, respectively. All 327 randomised patients received at least one dose of the study medication and thus were included in the ITT and safety analysis this table:View inline Table 1 Demographic data and prestudy clinical characteristics Before unblinding the study, a steering committee assessed protocol violations in 105/327 ( patients. Major protocol deviations comprised violation of inclusion criteria (CAI ⩽4, EI ⩽4, and no signs of acute inflammation on histological examination) (32 patients in both groups), premature discontinuation of the study without relapse (see below), and unknown or not unequivocally assessed end point (EcN 29 patients, mesalazine 24 patients). Accordingly, the PP analysis set comprised 222 patients (EcN 110, mesalazine 112). Mean duration of the study observation period was 250 (144) (median 357) days in the EcN group and 287 (125) (median 360) days in the mesalazine group. The number of patients in the study at the scheduled visits is shown in fig 1. Premature discontinuation of the study for reasons other than relapse of disease occurred in 39/327 ( patients (in 19/162 ( patients in the EcN group and in 20/165 ( patients in the mesalazine group) (table 2). Newly emerged exclusion criteria during the study were start of concomitant medication in four patients on EcN. One patient on mesalazine became afraid of 5-aminosalicylic acid (5-ASA) and another patient underwent cardiac this table:View inline Table 2 Reasons for premature discontinuation of the study Relapse (primary objective) PP analysis revealed relapse in 40/110 ( patients in the EcN group and in 38/112 ( patients in the mesalazine group (fig 2), resulting in significant equivalence between the two groups (p = The corresponding one sided upper 95% confidence limit for the difference in treatment was (that is, within the equivalence range of 20%). Figure 3 depicts the probability of remaining in remission by Kaplan-Meier curves. Median time to relapse in the EcN group could not be calculated due to the large number of late censorings. In the mesalazine group it was 386 days. ITT analysis confirmed these results, showing a relapse rate of in the EcN group and in the mesalazine group (significant equivalence p = The upper limit of the 95% confidence interval for the difference in treatment was Subgroup analyses (secondary objectives) All subgroup analyses were performed in the ITT population. CAI increased in all patients by ( points over the study period, showing a slightly larger increase in the EcN group ( ( than in the mesalazine group ( ( No differences were observed in EI or histology between the start and end of the study (fig 4). Table 3 lists relapse rates with regard to duration, localisation, and pretrial treatment. There were no significant differences between the treatment groups for any of these characteristics. Quality of life scores on admission were ( in the EcN group and ( in the mesalazine group. Respective values after 12 months were ( and ( No significant changes occurred during the 12 month observation this table:View inline Table 3 Relapse rates according to clinical characteristics (intention to treat population) Safety and tolerance As rated by the patients, overall tolerance was very good or good in the EcN group in and in the mesalazine group in According to the physician’s assessment, the respective values were and Discontinuation of the study medication due to adverse events (relapse included) occurred in 22 ( patients (11 ( in the EcN group and 11 ( in the mesalazine group). Most frequent reasons were gastrointestinal disorders such as bloody stools, nausea, diarrhoea, mucous secretion (EcN mesalazine and abdominal pain (EcN mesalazine Generally, no unexpected drug reactions occurred during the study. No deaths but 17 serious adverse events were reported in 13/327 (4%) patients (EcN 7, mesalazine 6). Each serious adverse event occurred only once. Adverse events were reported in 68/162 ( patients treated with EcN and in 58/165 ( patients treated with mesalazine. Many adverse events reflect symptoms common for active UC such as bloody stools ( diarrhoea ( and abdominal pain ( The most frequent non-intestinal adverse events were viral infections (EcN mesalazine nausea ( and headache ( Laboratory tests showed no significant alterations. DISCUSSION Most controlled trials are designed to test differences in efficacy. In contrast, our trial was aimed at proving equivalence. Indeed, we demonstrated that the probiotic EcN provides significantly equivalent efficacy in preventing relapses of UC and is not inferior to the established gold standard mesalazine. This result was not only confirmed by statistical analysis of the PP population, which is preferred in equivalence studies,18 but also by ITT analysis. Therapeutic efficacy is usually demonstrated by superiority in a placebo controlled trial. In serious disease however when effective therapy exists that has already been tested by comparison with placebo, additional placebo controlled trials may be considered A meta-analysis19 reviewed 16 studies of maintenance therapy involving 2341 patients with UC. In four of these 16 trials, preparations containing 5-ASA were compared with placebo; in the remaining 12 studies sulphasalazine was compared. 5-ASA was observed to be significantly more effective than placebo in all dosage subgroups (<1 g/day, 1– g/day, ⩾2 g/day). A dose dependent trend was not Indeed, some studies comparing at least two doses were performed showing mainly negative or conflicting results20: Pentasa 3 g/day was not superior to g/day; balsalazide 4 g/day was better than 2 g/day; balsalazide 6 g/day was better than 3 g/day in one study but in another trial was similarly effective; and two studies with olsalazine reached different conclusions. Thus superior efficacy of doses higher than g/day has not been It can be stated that mesalazine g/day presently reflects the standard in the prevention of UC relapses and thus it qualifies as a control in an equivalence trial. Previous studies on EcN were criticised12,13 for several reasons—for example, short observation period10 or heterogeneity of patients and outcome The present trial considered this critique and followed actual standards. The observation period was 12 months, only patients with UC in remission were included, and the clinical outcome was assessed by well established endoscopic and histological activity indices resulting in a low relapse rate for the mesalazine group comparable with previous A total of 327 patients were included to achieve a statistical power sufficient to test for equivalence in a one sided set. Most likely, IBD is caused by an unrestrained inflammatory response to as yet undefined agents. Although precise identification of the antigenic stimuli has not been determined, the intestinal microflora represents a likely To manipulate the resident gut bacteria therefore seems to offer a rational approach to maintaining remission in IBD. One way of doing this, which has gained credence over recent years, is by using Mechanisms which may account for probiotic activity include production of antimicrobial agents, inhibition of adhesion of pathogens, and influence on mucosal barrier It was reported that inhibition of nuclear factor κB could be mediated by probiotic The properties of EcN are well characterised25 and its genome has been extensively It carries non-pathogenic adhesion molecules. A specific lipopolysaccharide renders it immunogenic without showing any immunotoxic Immunomodulating activity was demonstrated for specific immune responses as well as for induction of non-specific natural immunity in preterm EcN develops antagonistic activity against enterobacteria such as Salmonella enteritidis, Shigella dysenteriae, Yersinia enterocolitica, and Vibrio It prevents invasion of Salmonella typhimurium into intestinal cells,31 inhibits adhesion and invasion of adherent invasive E coli,32 and reduces concentrations of mucosa associated colonic microflora constituents in EcN is safe. Molecular genetics as well as functional analyses have revealed that EcN does not produce any virulence factors or carry any genes for pathogenicity It does not bear genes for antibiotic resistance, transferable genes or plasmids, and does not take up foreign pathogenic DNA. No formation of enterotoxins, cytotoxins, or haemolysins has been observed and there is no serum Clinical studies have demonstrated a favourable safety profile for EcN compared with placebo,35,36 mesalazine,10,11 and Our study confirms this excellent safety and tolerance record. There are other controlled studies with different probiotics. Relapse prevention with Lactobacillus GG tested negatively for maintenance therapy in surgically induced remission of Crohn’s disease38 but a small study showed positive results when Saccharomyces boulardii was added to Inflammation of the ileal pouch constructed after proctocolectomy and ileoanal anastomosis in patients with UC is of particular interest because bacterial growth seems to be of pivotal pathophysiological significance. Cases successfully treated with EcN have been A formulation comprising eight different probiotic bacteria demonstrated convincing therapeutic effects in primary prevention41 and chronic In an uncontrolled study, this preparation was able to colonise the gut and maintain remission in patients with In conclusion, the use of probiotics in IBD is in accordance with its pathogenesis. They may prevent induction of inflammatory reactions. EcN shows therapeutic efficacy and safety in maintaining remission in UC. It can be considered as an alternative to mesalazine. APPENDIX The following institutions, local principal investigators, and local coordinators participated in this study: Austria: University Hospital, Graz: W Petritsch. Czech Republic: Nemocnice Milosrdnych sester sv Karla Boromejského, Prague: J Dosedel; University Hospital, Hradec Kralove: B Fixa; Central Military Hospital, Prague: P Frič; University Hospitals, Prague: M Kment, M Lukáš; University Hospital Plzen: J Koželuhová; University Hospital Brno: H Simonová; Masaryk Hospital, Ústí nad Labem: K Mareš, J Stehlík. Estonia: Central Hospital, Tallin: B Margus; University Hospital, Tartu: R Salupere. Germany: Private Practice, Essen: A Boekstegers; University Hospital, Jena: H Bosseckert; University Hospital, Regensburg: V Gross; DRK-Kliniken Westend, Berlin: R Büchsel; Charité-Campus Virchow, Berlin: A Dignass; Private Practice, Rottenburg aN: F Dreher; Private Practice, Frankenberg: R Engelhard; Private Practice, Bad Homburg: G Ermert; Private Practice, Karlsruhe: U Farack; Private Practice, Marburg: J Hein; Kreisklinik München-Pasing, München: J Heinkelein; Mittelrhein-Klinik Bad Salzig, Boppard: R Herz; Private Practice, Bautzen: I König; Ev Krankenhaus Kalk, Köln: W Kruis; Private Practice, Münster: Th Krummenerl; Private Practice, Cottbus: A Kühn; Israelitisches Krankenhaus, Hamburg: P Layer; University Hospital, Dresden: G Lobeck; Charité-Humboldt-University, Berlin: H Lochs; Private Practice, Neuenkirchen: R Moellmann; Private Practice, Cottbus: E Muehlberg; University Hospital Großhadern, München: Th Ochsenkühn; Städtisches Klinikum Friedrichstadt, Dresden: H Porst; Krankenhaus Tabea, Hamburg: A Raedler; University Hospital, Erlangen: M Raithel; Krankenhaus Nordwest, Frankfurt: W Rösch; University Hospital, Bonn: Ch Scheurlen; Private Practice, Gera: U Schindler; Private Practice, Reutlingen: W Schmeißer; Private Practice, Regensburg: E Schütz; Krankenhaus Speyerer, Heidelberg: R Singer; University Hospital Benjamin Franklin, Berlin: R Stange; University Hospital, Frankfurt: J Stein; Klinikum der RWTH, Aachen: Th Schönfelder; University Hospital, Mainz: R Wanitschke; Private Practice, Koblenz: A Lütke, J Weismüller; St Michael Krankenhaus, Völklingen: D Woerdehoff; Private Practice, Erlangen: J Zeus. Latvia: Paula Stradina Clinical University Hospital, Riga: J Pokrotnieks. Lithuania: University Hospital, Vilnius: A Irnius; Kauno Medicinos Akademija, Kaunas: L Kupcinskas. Slovak Republic: Comenius University Hospital, Bratislava: M Huorka; City Hospital, Trencíne: M Kaščák; University Hospital, Košice: T Hildebrand. Sweden: Sabbatsberg Naersjukhuset, Stockholm: P Benno; Karolinska Institutet: A Uribe. Switzerland: Kantonsspital-University, Basel: Ch Beglinger. UK: Leeds General Infirmary, Leeds: ATR Axon; St Mark’s Hospital, London: MA Kamm. REFERENCES↵ ↵ Stange EF, Riemann J, von Herbay A, et al. Diagnosis and therapy of ulcerative colitis—results of an evidence-based consensus conference of the German Society of Digestive and Metabolic Diseases. Z Gastroenterol2001;39:19–20. ↵ Travis SP, Jewell DP. Salicylates for ulcerative colitis—their mode of action. Pharmacol Ther1994;63:135–61. ↵ Shanahan F . Probiotics and inflammatory bowel disease: is there a scientific rationale? Inflamm Bowel Dis2000;6:107–15. D’Haens GR, Geboes K, Peeters M, et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology1998;114:262–7. ↵ Sartor RB. Postoperative recurrence of Crohn’s disease: the enemy is within the fecal stream. Gastroenterology1998;114:398–400. ↵ Rutgeerts P , Hiele M, Geboes K, et al. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology1995;108:1617–21. ↵ Hulten K , Almashhrawi A, El Zaatari FA, et al. Antibacterial therapy for Crohn’s disease: a review emphasizing therapy directed against mycobacteria. Dig Dis Sci2000;45:445–56. ↵ Hart AL, Stagg AJ, Kamm MA. Related articles, links use of probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol2003;36:111–19. ↵ Kruis W , Schütz E, Fric P, et al. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther1997;11:853–8. ↵ Rembacken BJ, Snelling AM, Hawkey PM, et al. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet1999;354:635–9. ↵ Folwaczny C . Probiotics for prevention of ulcerative colitis recurrence: alternative medicine added to standard treatment? Z Gastroenterol2000;38:547–50. ↵ Faubion WA, Sandborn WJ. Probiotic therapy with E. coli for ulcerative colitis: take the good with the bad, Gastroenterology2000;118:630–1. ↵ Rachmilewitz D . Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. BMJ1989;298:82–6. ↵ Riley SA, Mani V, Goodman MJ, et al. Microscopic activity in ulcerative colitis: what does it mean? Gut1991;32:174–8. ↵ Guyatt G , Mitchell A, Irvine EJ, et al. A new measure of health status for clinical trials in inflammatory bowel disease. Gastroenterology1989;96:804–10. ↵ Farrington CP, Manning G. Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference of non-unity relative risk. Stat Med1990;9:1447–54. ↵ ↵ Sutherland LR, Roth DE, Beck PL. Alternatives to sulfasalazine: A meta-analysis of 5-ASA in the treatment of ulcerative colitis. Inflamm Bowel Dis1997;3:65–78. ↵ Riley SA. What dose of 5-aminosalicylic acid (mesalazine) in ulcerative colitis? Gut1998;42:761–3. ↵ Sartor RB. Enteric microflora in IBD: pathogens or commensals? Inflamm Bowel Dis1997;3:230–5. ↵ Campieri M , Gionchetti P. Bacteria as the cause of ulcerative colitis. Gut2001;48:132–5. ↵ Hamilton-Miller JMT. A review of clinical trials of probiotics in the management of inflammatory bowel disease. Infect Dis Rev2001;3:83–7. ↵ Neish AS, Gewirtz AT, Zeng H, et al. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science2000;289:1560–3. ↵ Blum G , Marre R, Hacker J. Properties of Escherichia coli strains of serotype O6. Infection1995;23:234–6. ↵ Blum-Oehler G . The scanned bacterium: Analysis of the microbial genome. 4th Interdisciplinary Symposium: Internal microflora in symbiosis and pathogenicity, Berlin 2000. Hagen: Alfred-Nissle-Gesellschaft eV 2001:23–31. ↵ Grozdanov L , Zaehringer U, Blum-Oehler G, et al. A single-nucleotide exchange in the wzy gene is responsible for the semi-rough O6 LPS phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J Bacteriol2002;184:5912–25. ↵ Cukrowska B , Lodinova-Zadnikova R, Enders C, et al. Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E. coli strain Nissle 1917. Scand J Immunol2002;55:204–9. ↵ Schulze J , Sonnenborn U. Oral administration of a certain strain of live Escherichia coli for intestinal disorders? Infection1995;23:184–6. ↵ Schulze J , Lorenz A, Mandel L. Colonisation of Escherichia coli in different gnotobiotic animal models. Microb Ecol Health Dis1992;5:iv–v. ↵ Oelschläger TA, Altenhoefer A, Hacker J. Inhibition of Salmonella typhimurium invasion into intestinal cells by the probiotic E. coli strain Nissle 1917. Gastroenterology2001;120 (suppl) :A326. ↵ Boudeau J , Rich C, France CF, et al. Escherichia coli strain Nissle 1917 inhibits adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli isolated from a Crohn’s disease patient. Gastroenterology2001;120 (suppl) :A190. ↵ Swidsinski A , Swidsinski S, Godzun A, et al. Therapy with E. coli Nissle reduces concentrations of mucosa associated colonic flora in patients with ulcerative colitis. Gastroenterology2000;118 (suppl) :A1138. ↵ Schulze J , Sonnenborn U. The role of the gut flora in inflammatory bowel diseases. In: Shimoyama T, Axon A, Lee A, et al, eds. In: Helicobacter meets inflammatory bowel disease. Tokyo: Medical Tribune Inc, 2002:393–417. ↵ Möllenbrink M , Bruckschen E. Treatment of chronic constipation with physiologic Escherichia coli bacteria. Results of a clinical study of the effectiveness and tolerance of microbiological therapy with the E. coli Nissle 1917 strain (Mutaflor). Med Klin1994;89:587–93. ↵ Malchow HA. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease? J Clin Gastroenterol1997;25:653–8. ↵ Bruckschen E , Horosiewicz H. Chronic constipation. Comparision of microbiological therapy and lactulose. MMW1994;136:241–5. ↵ Prantera C , Scribano ML, Falasco G, et al. Ineffectiveness of probiotics in preventing recurrence after curative resection for Crohn’s disease: a randomised controlled trial with Lactobacillus GG. Gut2002;51:405–9. ↵ Guslandi M , Mezzi G, Sorghi M, et al. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci2000;45:1462–4. ↵ Kuzela L , Kaščák M, Vavrecka A. Induction and maintenance of remission with nonpathogenic Escherichia coli in patients with pouchitis. Am J Gastroenterol2001;96:3218–19. ↵ Gionchetti P , Rizzello F, Helwig U, et al. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology2003;124:1202–9. ↵ Gionchetti P , Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology2000;119:305–9. ↵ Venturi A , Gionchetti P, Rizzello F, et al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther1999;13:1103–8. Read the full text or download the PDF: Log in using your username and password
Escherichia coli Nissle 1917 (EcN) is a probiotic used in the treatment of intestinal diseases. Although it is considered safe, EcN is closely related to the uropathogenic E. coli strain CFT073 and contains many of its predicted virulence elements. Thus, it is relevant to assess whether virulence-associated genes are functional in EcN.
Authors: Pallavi Subhraveti1, Peter Midford1, Anamika Kothari1, Ron Caspi1, Peter D Karp1 1SRI International Summary: This Pathway/Genome Database (PGDB) was generated on 8-Mar-2022 from the annotated genome of Escherichia coli Nissle 1917, as obtained from RefSeq (annotation date: 26-MAY-2021). The PGDB was created computationally by the PathoLogic component of the Pathway Tools software (version [Karp16, Karp11] using MetaCyc version [Caspi20]. It has not undergone any manual curation or review, and may contain errors. Development of this PGDB was supported by grant GM080746 from the National Institutes of Health. Sequence Source: Taxonomic Lineage: cellular organisms, Bacteria , Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia, Escherichia coli, Escherichia coli Nissle 1917 Unification Links: BIOSAMPLE:SAMN07451663, NCBI BioProject:PRJNA224116, NCBI-Taxonomy:316435 Organism or Sample Properties Environment: stool Geographic Location: Germany Freiburg Altitude (m): Collection Date: 1917 Host: Homo sapiens Annotation Provider: NCBI RefSeq Annotation Date: 2021-5-25 17:34:29 Annotation Pipeline: NCBI Prokaryotic Genome Annotation Pipeline (PGAP) Annotation Pipeline Version: Annotation Comment: Best-placed reference protein set; GeneMarkS-2+ RepliconTotal GenesProtein GenesRNA GenesPseudogenesSize (bp)NCBI Link NZ_CP0226864,8114,5381141595,055,316NCBI-RefSeq:NZ_CP022686 pNissle116140211,499NCBI-RefSeq:NZ_CP022687 pMUT287015,514NCBI-RefSeq:NZ_CP023342 Total:4,8374,5591141625,072,329 Ortholog data available?Yes Genes:4,837 Pathways:423 Enzymatic Reactions:2,300 Transport Reactions:250 Polypeptides:4,561 Protein Complexes:26 Enzymes:1,777 Transporters:708 Compounds:1,565 Transcription Units:2,883 tRNAs:86 Protein Features:6,449 GO Terms:3,793 Genetic Code Number: 11 -- Bacterial, Archaeal and Plant Plastid (same as Standard, except for alternate initiation codons) PGDB Unique ID: 2K79 References Caspi20: Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, Ong WK, Paley S, Subhraveti P, Karp PD (2020). "The MetaCyc database of metabolic pathways and enzymes - a 2019 update." Nucleic Acids Res 48(D1);D445-D453. PMID: 31586394 Karp11: Karp PD, Latendresse M, Caspi R (2011). "The pathway tools pathway prediction algorithm." Stand Genomic Sci 5(3);424-9. PMID: 22675592 Karp16: Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, Kothari A, Weaver D, Lee T, Subhraveti P, Spaulding A, Fulcher C, Keseler IM, Caspi R (2016). "Pathway Tools version update: software for pathway/genome informatics and systems biology." Brief Bioinform 17(5);877-90. PMID: 26454094Report Errors or Provide Feedback Page generated by Pathway Tools version (software by SRI International) on Wed Jul 27, 2022, BIOCYC17B. Escherichia coli Nissle 1917 (EcN), a kind of probiotic, has been reported to have a protective effect on the intestinal barrier function and can ameliorate certain gastrointestinal disorders. In this study, the potential protective effect of EcN on the intestinal barrier function in a septic mouse model induced by cecal ligation and puncture Escherichia coli (E. coli) to pospolita bakteria występująca w mikroflorze jelita grubego u ludzi i zwierząt stałocieplnych. W większości to nieszkodliwe bakterie, niektóre jednak powodować mogą poważne zatrucia pokarmowe, zapalenia żołądka, czy jelit. Jest jednak jeden wyjątkowy szczep, który stosuje się do zapobiegania i leczenia wszelkich dolegliwości trawiennych – Escherichia coli Nissle 1917. Bakterie te zostały odkryte ponad 100 lat temu, przez fryburskiego higienistę, prof. dr Alfreda Nissle, który założył we Freiburgu w 1938 r. prywatny instytut badań bakteriologicznych, którym kierował aż do śmierci w 1965 r. Podczas I wojny światowej, w 1917 roku, w pewnej grupie żołnierzy, w szpitalu wojskowym nieopodal Freiburga, wybuchła czerwonka. Tylko jeden żołnierz pozostał zdrowy, nie wykazując żadnych objawów choroby jelit. Widząc to, prof. Nissle przebadał jego kał pod kątem zawartości bakterii jelitowych i wyizolował szczep E. coli, który następnie użył do leczenia pozostałych żołnierzy. Od tego czasu, szczep ten zaczęto nazwać E. coli Nissle 1917, i stosować go w leczeniu różnych zaburzeń żołądkowo-jelitowych. Na Uniwersytecie we Freiburgu, studenci prof. Nissle, podczas zajęć praktycznych z mikrobiologii, mieszali własne próbki kału z czystymi hodowlami patogennych szczepów Salmonelli. Zazwyczaj obserwowali szybki rozrost Salmonelli, wypierających tym samym, inne bakterie jelitowe. Były jednak i takie przypadki, w których rozrost był nieznaczny, a nawet wcale niezauważalny. W ten sposób powstała hipoteza, że mikroflora niektórych próbek kału zawiera takie szczepy, które hamują rozwój mikroorganizmów patogennych. Później podejrzenia te zostały potwierdzone w laboratorium, w trakcie badań hodowli mieszanin szczepów Salmonella z różnymi izolatami E. coli, uzyskanymi z próbek kału zdrowych ludzi. Okazało się, że patogenne szczepy E. coli posiadają dodatkowe geny, tzw. „geny zjadliwości”, które czynią je chorobotwórczymi. Escherichia coli Nissle 1917 natomiast, wyróżnia się na tle innych bakterii ze swojej rodziny, tym, że na drodze ewolucji, poprzez poziomy transfer genów z innych bakterii jelitowych, nabyła dodatkowe elementy genetyczne, nazywane „Wyspami Genomowymi”. To one są odpowiedzialne m. in. za zdolność hamowania rozwoju różnego rodzaju enteropatogenów. Tę szczególną właściwość, prof. Nissle nazwał „aktywnością antagonistyczną”. Niepatogenny szczep bakterii Escherichia coli wykazuje wiele korzystnych właściwości, pełni istotne funkcje w ludzkim organizmie. Odpowiedzialny jest za rozkład produktów spożywczych, bierze udział w produkcji witamin z grupy B i K, poprawia wchłanianie żelaza. Jest bakterią tlenową, więc po przez zużycie tlenu obecnego w jelitach przyczynia się do wytworzenia pozytywnego środowiska dla anaerobów – bakterii beztlenowych. Wspomaga proces zasiedlania innych bakterii probiotycznych jednocześnie usuwając patogeny z mikroflory jelit. Szczep E-coli Nissle 1917 posiada właściwości probiotyczne oraz adhezyjne – przyczepia się do ścian jelitowych uszczelniając je i wpływając aprobująco na wchłanianie organizmu. Szczep Escherichia coli Nissle 1917 sprzyja tworzeniu substancji przeciwzapalnych i autogennych antybiotyków oraz wpływa pozytywnie na system immunologiczny. Niepatogenna E-coli sprawdza się w leczeniu wrzodziejącego zapalenia jelita grubego, zespołu jelita drażliwego, w walce z alergiami pokarmowymi, a także wykazuje korzystne działanie w profilaktyce raka jelita grubego. Niedobór tej bakterii w organizmie przynieść może przykre skutki w postaci częstego występowania nawracających infekcji moczowo-płciowych, czy oddechowych, a to wszystko za sprawą obniżonej odporności śluzówek. Niestety, wraz z pojawieniem się antybiotyków, zgasło zainteresowanie mikroflorą jelitową i terapeutycznym zastosowaniem żywych bakterii. Dopiero niedawno, medyczne osiągnięcia i rozwój mikrobiologii, spowodowały, że wcześniejsze doświadczenia mogły zostać dokładnie potwierdzone, a leczenie probiotykami znalazło się na powrót w centrum zainteresowania lekarzy i naukowców. Obecnie jest to prawdopodobnie najintensywniej badany szczep bakteryjny. In 1917, as war was tearing its way across Europe, a fascinating scientific observation was being made. to isolate a strain of bacteria that came to be known as Escherichia coli Nissle 1917 Review Escherichia coli Nissle 1917 in Ulcerative Colitis Treatment: Systematic Review and Meta-analysis Giuseppe Losurdo et al. J Gastrointestin Liver Dis. 2015 Dec. Free article Abstract Background and aims: Escherichia coli Nissle 1917 (EcN) has been recommended as a therapeutic tool for ulcerative colitis (UC) treatment. However, to date, no meta-analysis has been performed on this topic. Methods: We performed a literature search on PubMed, MEDLINE, Science Direct and EMBASE. We evaluated success rates for induction of remission, relapse rates and side effects, expressed as Intention-To-Treat. Odd ratios (OR), pooled OR and 95% confidence intervals (CI) were calculated, based on the Mantel-Haenszel method. Heterogeneity was assessed by using the χ2 and I2 statistics and, if present, a random-effects model was adopted. Results: We selected six eligible trials, with 719 patients, 390 assigned to the study group and 329 to the control group. EcN induced remission in of cases, while in the control group (mesalazine) the remission was achieved in of cases, with a mean difference of The pooled OR was (95% CI p= A single study showed a better performance of EcN than the placebo. A relapse of the disease occurred in in the EcN group and in in the control group (mesalazine), with a mean difference of OR= with a 95% CI of (p= Side effects were comparable (OR= 95% CI p= Conclusions: EcN is equivalent to mesalazine in preventing disease relapse, thus confirming current guideline recommendations. EcN seems to be as effective as controls in inducing remission and therefore, its use cannot be recommended as in one study the comparison was performed against placebo. Further studies may be helpful for this subject. Similar articles Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: An update. Scaldaferri F, Gerardi V, Mangiola F, Lopetuso LR, Pizzoferrato M, Petito V, Papa A, Stojanovic J, Poscia A, Cammarota G, Gasbarrini A. Scaldaferri F, et al. World J Gastroenterol. 2016 Jun 28;22(24):5505-11. doi: World J Gastroenterol. 2016. PMID: 27350728 Free PMC article. Review. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT. Rembacken BJ, et al. Lancet. 1999 Aug 21;354(9179):635-9. doi: Lancet. 1999. PMID: 10466665 Clinical Trial. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Kruis W, Fric P, Pokrotnieks J, Lukás M, Fixa B, Kascák M, Kamm MA, Weismueller J, Beglinger C, Stolte M, Wolff C, Schulze J. Kruis W, et al. Gut. 2004 Nov;53(11):1617-23. doi: Gut. 2004. PMID: 15479682 Free PMC article. Clinical Trial. [Maintaining remission of ulcerative colitis with the probiotic Escherichia Coli Nissle 1917 is as effective as with standard mesalazine]. Adam B, Liebregts T, Holtmann G. Adam B, et al. Z Gastroenterol. 2006 Mar;44(3):267-9. doi: Z Gastroenterol. 2006. PMID: 16514573 German. No abstract available. Probiotics for maintaining remission of ulcerative colitis in adults. Do VT, Baird BG, Kockler DR. Do VT, et al. Ann Pharmacother. 2010 Mar;44(3):565-71. doi: Epub 2010 Feb 2. Ann Pharmacother. 2010. PMID: 20124461 Review. Cited by Efficacy and Safety of Probiotics Combined With Traditional Chinese Medicine for Ulcerative Colitis: A Systematic Review and Meta-Analysis. Hu Y, Ye Z, She Y, Li L, Wu M, Qin K, Li Y, He H, Hu Z, Yang M, Lu F, Ye Q. Hu Y, et al. Front Pharmacol. 2022 Mar 7;13:844961. doi: eCollection 2022. Front Pharmacol. 2022. PMID: 35321324 Free PMC article. Review. Comment on Depoorter, L.; Vandenplas, Y. Probiotics in Pediatrics. A Review and Practical Guide. Nutrients 2021, 13, 2176. von Bünau R, Erhardt A, Stange E. von Bünau R, et al. Nutrients. 2022 Feb 9;14(4):724. doi: Nutrients. 2022. PMID: 35215374 Free PMC article. Review. A Probiotic Friend. Dubbert S, von Bünau R. Dubbert S, et al. mSphere. 2021 Dec 22;6(6):e0085621. doi: Epub 2021 Dec 22. mSphere. 2021. PMID: 34935447 Free PMC article. No abstract available. MicroRNA and Gut Microbiota: Tiny but Mighty-Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. Casado-Bedmar M, Viennois E. Casado-Bedmar M, et al. J Crohns Colitis. 2022 Jul 14;16(6):992-1005. doi: J Crohns Colitis. 2022. PMID: 34918052 Free PMC article. Review. Efficient markerless integration of genes in the chromosome of probiotic E. coli Nissle 1917 by bacterial conjugation. Seco EM, Fernández LÁ. Seco EM, et al. Microb Biotechnol. 2022 May;15(5):1374-1391. doi: Epub 2021 Nov 9. Microb Biotechnol. 2022. PMID: 34755474 Free PMC article. Publication types MeSH terms Substances LinkOut - more resources Full Text Sources Iuliu Hatieganu Medical Publishing House Other Literature Sources The Lens - Patent Citations Medical Genetic Alliance MedlinePlus Health Information 96tXn. 124 426 255 287 17 52 90 234 72

escherichia coli nissle 1917