Dane są trzy punkty: Kuba: Dane są trzy punkty: A= (−4,−2), B= (7,9), C= (6,2). a) Napisz równanie prostej AB b) Napisz równanie prostej k prostopadłej do prostej AB i przechodzącej przez punkt C c) Wyznacz współrzędne punktu przeciecia prostej AB z prostą k d) Oblicz pole trójkąta ABD
a)A = ( 2; - 5) , B = ( - 4; 7 )P = ( x; y)a) I PB I / I AB I = 1/3więc--> -->BP = (1/3) BA Mamy-->BP = [ x - (-4) ; y - 7 ] = [ x + 4 ; y - 7 ]-->BA = [ 2 - ( -4) ; - 5 - 7 ] = [ 6 ; - 12 ]więc -->(1/3) BA = (1/3)*[ 6; - 12 ] = [ 2 ; - 4]i dlatego[ x + 4; y - 7 ] = [ 2; - 4 ]x + 4 = 2 i y - 7 = - 4x = 2 - 4 = - 2 i y = - 4 + 7 = 3Odp. P = ( - 2; 3 )================b)I PB I / I AP I = 3więc--> -->PB = 3 * APP = ( x; y)-->PB = [ - 4 - x; 7 - y ]-->AP = [ x - 2; y - ( - 5) ] = [x - 2; y +5 ] -->3 * AP = 3*{ x - 2; y + 5 ] = [ 3 x - 6 ; 3 y + 15 ] więcI - 4 - x ; 7 - y ] = [ 3 x - 6 ; 3 y + 15 ]- 4 - x = 3 x - 6 i 7 - y = 3 y + 156 - 4 = 3x + x i 7 - 15 = 3 y + y4 x = 2 i 4 y = - 8x = 0,5 i y = - 2Odp. P = ( 0,5 ; - 2 )==================== Punkty A(-4,0),B(4,4),C(-5,7) są wierzchołkami trójkąta. Odcinek CD jest wysokością tego trójkąta. Oblicz: a) współrzędne punktu D b) długość wysokości CD
Malutka667 @Malutka667 January 2019 1 152 Report Dane są punkty M = (3, -5) oraz N = (-1, 7) . Prosta przechodząca przez te punkty ma równanie; a) y=-3x+4 b) y=3x-4 c) y=-1/3x+4 d) y=3x+4 chica199 -5=3a+b/-17= -a+b5=-3a-b7= -a+b12=-4aa=-37= -a+b7=3+b-3+7=bb=4y=-3x+4 odp. aJak maturka ogółem poszła, widzę że też stara, 0 votes Thanks 2 More Questions From This User See All Malutka667 January 2019 | 0 Replies 1. Wyznacz równanie funkcji liniowej, której wykres przechodzi przez punkty A = (-1; 2) i B = (2; -7) 2. Napisz wzór funkcji liniowej, której wykres przechodzi przez punkt A(-5,0) i jest równoległy do wykresu funkcji y = 0,2 x. 3. Prosta l ma równanie y = − 7x + 2. Podaj równanie prostej prostopadłej do l i przechodzącej przez punkt P=(0,1). Answer Malutka667 January 2019 | 0 Replies W pewnej klasie stosunek liczby dziewcząt do liczby chłopców jest równy 4:5 Losujemy jedną osobę z tej klasy. Prawdopodobieństwo tego, że będzie to dziewczyna, jest równe ; a)4/5 b)4/9 c)1/4 d)1/9 Answer Malutka667 January 2019 | 0 Replies Kula o promieniu 5 cm i stożek o promieniu podstawy 10 cm mają równe objętości. Wysokość stożka jest równa : a)25/π cm b)10 cm c)10/π cm d)5 cm Answer Malutka667 January 2019 | 0 Replies Przekątna ściany sześcianu ma długość 2. Pole powierzchni całkowitej tego sześcianu jest równe : a)24 b)12 c)16 i pierwiastek z 2 d) 12 i pierwiastek z 2 Answer Malutka667 January 2019 | 0 Replies Proste o równaniach: y=2mx-m^2-1 oraz y=4m^2x+m^2+1 są prostopadłe dla m równego : a)-1/2 b)1/2 c)1 d)2 Answer Malutka667 January 2019 | 0 Replies Trzy liczby, których suma jest równa 105, tworzą ciąg geometryczny, Jeśli pierwszą liczbę zmniejszymy o 45, to otrzymamy ciąg arytmetyczny, Wyznacz te liczby. Answer malutka667 November 2018 | 0 Replies proszejaką zdolnośc skupiajacą mają soczewki o ogniskowych 50 cm , -25 cm i 12,5 cm. jaka jest lączna zdolność skupiająca ukladu tych soczewek? Answer malutka667 November 2018 | 0 Replies Jaką zdolność skupiającą maja soczewki o ogniskowych 50 cm , -25 cm i 12,5cm. Jaka jest łączna zdolność skupiająca uklad tych soczewek? Answer
Zadanie: dane są punktami a 4,6 b 3,1 c 6,2 wyznacz Rozwiązanie:oznaczmy przez x,y współrzędne punktu d jeśli wektor ab ma być równy wektorowi cd to różnice współrzędnych punktów a i b oraz punktów c i d muszą być równe 3 4 x 6 stąd x 5 1 6 y 2 stąd y 3 współrzędne punktu d to b d 5, 3 b odległość ad z tw pitagorasa ad pierwiastek 5 4 2 3 6 2 b pierwiastek 82 b a) A(7, 2), B(3,-1)c) A(-4,-7), B(1,5)b) A(0, -3), B(-1,0) d) A(-5, 3), B(0, -2)Chcę dostęp do Akademii!
Dane są trzy punkty B, U, K, które NIE LEŻĄ na jednej prostej. Ile prostych możesz poprowadzić przez te punkty? 2012-11-19 19:35:31; dane są trzy punkty,które nieleżą na jednrj prostej ile prostych możesz przeprowadzić przez te punkty? 2010-10-18 18:52:13; Kiedy 2 punkty są symetryczne względem prostej? 2010-05-12 18:03:23
Długość odcinka o końcach w punktach \(A=(x_1,y_1)\) oraz \(B=(x_2,y_2)\) wyraża się wzorem: \[|AB|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\] Wzór na długość odcinka można wyprowadzić z twierdzenia Pitagorasa dla trójkąta prostokątnego \(ABC\): \[\begin{split} |AB|^2&=|AC|^2+|BC|^2\\[6pt] |AB|&=\sqrt{|AC|^2+|BC|^2}\\[6pt] |AB|&=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \end{split}\] Dane są punkty \(P=(-2,-2)\), \(Q=(3,3)\). Odległość punktu \(P\) od punktu \(Q\) jest równa A.\( 1 \) B.\( 5 \) C.\( 5\sqrt{2} \) D.\( 2\sqrt{5} \) CDługość odcinka \( AB \), którego wierzchołki mają współrzędne \( A=(-3,-2) \) i \( B=(-1,4) \), jest równa A.\(2\sqrt{5} \) B.\(2\sqrt{10} \) C.\(4\sqrt{2} \) D.\(\sqrt{41} \) BDane są punkty \(A=(1,-4)\) i \(B=(2,3)\). Odcinek \(AB\) ma długość A.\( 1 \) B.\( 4\sqrt{3} \) C.\( 5\sqrt{2} \) D.\( 7 \) CNa okręgu o środku \(S=(-6,1)\) leży punkt \(A=(-2,4)\). Promień tego okręgu jest równy A.\(5\) B.\(7\) C.\(\sqrt{73}\) D.\(\sqrt{7}\) APunkty \(B = (−2, 4)\) i \(C = (5, 1)\) są dwoma sąsiednimi wierzchołkami kwadratu \(ABCD\). Pole tego kwadratu jest równe A.\( 74 \) B.\( 58 \) C.\( 40 \) D.\( 29 \) BPunkty \( A=(-1,3)\) i \(C=(7,9) \) są przeciwległymi wierzchołkami prostokąta \( ABCD \). Promień okręgu opisanego na tym prostokącie jest równy A.\(10 \) B.\(6\sqrt{2} \) C.\(5 \) D.\(3\sqrt{2} \) CPunkty \(A=(1,-2)\), \(C=(4,2)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Wysokość tego trójkąta jest równa A.\( \frac{5\sqrt{3}}{2} \) B.\( \frac{5\sqrt{3}}{3} \) C.\( \frac{5\sqrt{3}}{6} \) D.\( \frac{5\sqrt{3}}{9} \) APunkty \(A=(-3,-1)\), \(B=(2,5)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Pole tego trójkąta jest równe A.\( \frac{\sqrt{183}}{2} \) B.\( \frac{61\sqrt{3}}{2} \) C.\( \frac{61\sqrt{3}}{4} \) D.\( \frac{11\sqrt{3}}{4} \) CPunkty \(B=(0,0)\), \(C=(3,0)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Obwód tego trójkąta jest równy A.\( 3 \) B.\( 9 \) C.\( \frac{3\sqrt{3}}{2} \) D.\( \frac{9\sqrt{3}}{4} \) BPunkty \( A=(-1,2) \) i \( B=(2,6) \) są wierzchołkami kwadratu \( ABCD \). Pole tego kwadratu jest równe: A.\(17 \) B.\(65 \) C.\(25 \) D.\(7 \) CDany jest okrąg o środku \(S=(−6,−8)\) i promieniu \(2014\). Obrazem tego okręgu w symetrii osiowej względem osi \(Oy\) jest okrąg o środku w punkcie \(S_1\). Odległość między punktami \(S\) i \(S_1\) jest równa A.\( 12 \) B.\( 16 \) C.\( 2014 \) D.\( 4028 \) APunkty \(E = (7,1)\) i \(F = (9,7)\) to środki boków, odpowiednio \(AB\) i \(BC\) kwadratu \(ABCD\). Przekątna tego kwadratu ma długość A.\( 4\sqrt{5} \) B.\( 10 \) C.\( 4\sqrt{10} \) D.\( 20 \) C
4. Dane są trzy niewspółliniowe punkty kratowe A,B,Cukładu współrzęd-nych, takie że długość każdego z odcinków AB,BC,CAjest liczbą całkowitą. Znaleźć najmniejszą możliwą długość odcinka AB. 5. Znaleźć wszystkie liczby pierwsze ptakie, że liczba p2 −p+ 1 jest sze-ścianem liczby całkowitej. 6.
setch Użytkownik Posty: 1307 Rejestracja: 14 sie 2006, o 22:37 Płeć: Mężczyzna Lokalizacja: Bełchatów Podziękował: 155 razy Pomógł: 208 razy Dane sa 3 punkty... a) Dane są trzy punkty A, B, C. Jaka jest najmniejsza figura wypukła zawierająca te trzy punkty? b) Dane są cztery punkty A, B, C, D. Jaka jest namniejsza figura wypukła zawierająca te cztery punkty? a) Gdy punkty są współliniowe jest to odcinek. Gdy nie są współliniowe jest to \(\displaystyle{ \Delta_{ABC}}\) b) Gdy są współliniowe jest to odcinke. Gdy nie są współliniowe to?
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Dane są punkty M=(3; -5) oraz N=(-1; 7). Prosta przechodząca przez te punkty ma równanie: A. y= 3x+4 B. y= 3…
GEOMETRIA ANALITYCZNA / 2 LICEUM 1. Dane są trzy punkty: A=(-4,-2) , B=(7,9) , C=(6,2) a) Napisz równanie prostej AB. d) Oblicz pole trójkąta ABC. Dziękuje! ZnHRpi. 370 353 138 394 445 420 186 105 12

dane są trzy punkty a 7 4